
© Roman Elizarov

 The easiest problem in the contest

 One possible solution is to layout the bubbles
in the following way (row by row, switching
between left-to-right and right-to-left):

 The first phase of the solution is to get bit string
A to all zeroes by accepting only when weight
decrease
◦ Accept as the first action to know what weight is in A

 The second phase is to get bit string A to all ones
and learn all wi in the process by accepting only
when weight increase
◦ Then solve knapsack by exhaustive search of all 2n bit

strings and find the answer bit string

 The third phase is to get bit string B to the
answer bit string by accepting only when its gets
closer to solution

 The probability that this solution will not finish in
1000 turns is negligible

 Sort all intervals by ai (they also get ordered
by bi automatically). It is easy to prove that
the new intervals must follow in the same
order
◦ The solution is the minimum of (bj - ai)/(j - i+1) for

all pairs of i and j when i ≤ j, but this solution is
O(n2) and will not fit into the time limit.

 The correct solution is to use binary search to
find the answer length and then find the
closest simple irreducible fraction p/q to this
answer

 Parse each regular expression with recursive
descent and create non-deterministic final
automata with ε-transitions

 One approach
◦ Get rid of all ε-transitions in automaton by finding

their transitive closure. Now we have two NFA. A
with nA states and B with nB states

◦ Intersect these two NFAs. Build NFA with nA × nB

states and transition from on state-pair to the other
when both A and B have the the transition on the
same letter

◦ Now use BFS on intersection NFA to find the answer

 Alternatively, leave ε-transitions, do 0,1-BFS
and take special care of empty strings

 Find x mod 10. Notice, that if the result is
non-zero, you have to open some boxes with
1 ng weights, because all other boxes have
weights that are multiple of 10 ng

 The correct solution is to greedily open the
heaviest 1 ng boxes until there is enough
1 ng weights to cover x mod 10
◦ Then combine remaining 1 ng boxes and 10 ng

boxes and use the same greedy algorithm for x
mod 100, taking into account the boxes that were
already opened so far

◦ Repeat for all powers of 10

 Each Snake Cube puzzle can be represented
by a sequence of straight segments „S‟ and
turns „T‟

 The first phase of the solution is to analyze
plain configuration from the input and covert
it into a sequence of 25 „S‟ and „T‟

 The second phase is to use exhaustive search
with back-tracking to fold it into a 3 × 3 × 3
cube

 Convert n into a k-radix notation:
“amam-1 … a6a5a4a3a2a1a0“

 Now the problem is to count how many numbers
up to k have zero digits for odd powers of k, that
is, have the following form (assuming m is even):

“bm0 … b60 b40 b20 b0“
◦ There is one zero that Baron has to remember

◦ Add k-1 numbers with exactly 1 digit

◦ Add (k-1)k numbers with exactly 3 digits, etc …

◦ When m is even, add (bm – 1)km/2 numbers with exactly
m digits but with first digit less than bm

 Now for the numbers “bm0xxxx” if am-1 > 0 add km/2 and
return, otherwise add bm-2 km/2-2

 And continue to look for the numbers “bm0bm-20xxxx”, etc

 Notice, that a Hyperdrome string is a string that
has at most one letter that occurs an odd number
of times in it

 Scan the string from left to right and maintain a
bit string that for each letters counts whether it
occurs an odd (1) or an even (0) number of times
◦ Count the number of occurrences of each bit string in a

hash map (tree map will do, too)
 For each bit string check how many times it was previously

seen (it corresponds to the number of even-length
Hyperdromes that end here) and add to the result

 For each bit string and for all possible letters, flip the
corresponding bit and check how many times the resulting
bit string was previously see (it corresponds to the number
of odd-length Hyperdromes that end here) and add to the
result

 Represent each peak as WeightPpi + WieghtQqi
◦ Let MP and MQ be pi and qi of the largest peak
◦ Peaks that cannot be represented this way are obviously

noise; peaks whose pi exceed MP or qi exceed MQ, too

 The solution idea:
◦ Build the protein from two ends: its suffix and prefix

adding one amino acid at both ends at a time
◦ Count the number of all peaks in (pi, qi) item of MP × MQ

matrix, and also count its suffix in (MP - pi, MQ - qi)
 But peaks with 2(pi + qi) = MP + MQ should be counted once

◦ Implement O(n3) dynamic programming where for each
length of protein‟s prefix and suffix, number of Ps in prefix,
and number of Ps in suffix solve the problem of explaining
the maximum number of peaks
 Count the case when prefix and suffix are the same only once

◦ Then find the maximum number of peaks that can be
explained, separated taking care for case of odd and even
protein length

◦ Then figure out what protein it corresponds to

 The solution always exists when a, b, and c are at
least 3 and the solution is constructive

 For each c mod 3 case get rid of all c-type tickets
that make +/-3 jumps, jumping right, left, and
right again with them:
◦ Case 0: Need two a-type tickets
◦ Case 1: Need one a-type and two b-type tickets
◦ Case 2: Need two a-type tickets

 Jump right with a-type tickets leaving exactly one
a-type ticket

 The get rid of all b-type tickets jumping right
and the left and using one remaining a-type
ticket

 The hardest problem ever given on NEERC

 The solution is straightforward but requires a
lot of careful programming
◦ Use sweeping line algorithm to check each polyline

for self-intersections and self-touches to make
sure they are all polygons

 O(n2) check of all pairs is too slow

◦ Use similar sweeping line algorithm to check for
intersection between first and second polygons

◦ Use similar sweeping line algorithm with all three
polygons to check that union of first and second
polygons is equal to the third one

 There are many alternative ways to make this check

 The key fact to the solution:
◦ If one traverses the path from the entrance to the lair

using left-hand rule and using right-hand rule, then an
obstacle blocks all paths from the entrance to the lair if
and only if it blocks both left-hand and right-hand paths

 Precompute the number of blocked cells and the
number of cells visited by each path in each
rectangular (1, 1)…(x, y) region
◦ This way, one can find the corresponding number in

each rectangular (x1, y1)…(x2, y2) region in O(1) time

 For each (x, y) use binary search to find the
smallest square that blocks both left and right
path; check that the resulting square is not
blocked by any obstacles

